Dear MRSD Families,

As we release this next Distance Learning Activity Packet, please allow us to express our heartfelt appreciation for the efforts you're making to ensure students' most important needs are met, and to reassure those who worry if they're “doing it right,” or “doing enough” that we are here to help and not to judge. If you're doing what you can do – you’re doing it right, and we appreciate your support at home, in whatever capacity you are able to offer! Thank you!

We know this is a challenging time for families – with competing priorities, uncertainty and isolation, and we want to reaffirm that we stand with you in ALWAYS putting family first! As the expert on your child, you’re in the best position to decide what, when and how they engage in the learning we’ve designed, and you have our full backing in limiting (or adding to) the amount of school work they experience, based on your individual circumstance.

We invite you to reach out with specific questions, worries, or needs you may have. Please know that we're in this TOGETHER, and your school partners are here to help.

In gratitude,

K-5 Staff
We recommend each instructional day to include the following:

<table>
<thead>
<tr>
<th>Teacher-Led Learning</th>
<th>Family-Led Learning and Supplemental Activities</th>
<th>Meeting Nutrition and Wellness Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Minutes Maximum</td>
<td>2 Hours Recommended</td>
<td>2 Hours Recommended</td>
</tr>
</tbody>
</table>
| Instruction, tasks, and activities as assigned by teachers in this document (English Language Arts/Math/Wellness & Self-Care/Music). | Suggestions:
• 20+ minutes of independent reading or reading to family member (books of student choice)
• Counting and sorting
• Drawing
• Flashcards/math facts review
• 60+ minutes of imaginative play
• Journaling (write/draw)
• Arts and crafts
• Listening to music
• Board games, puzzles, dice, cards
• Drama/acting/singing
• Listening to a read aloud
• Watching educational programs or videos
• Finding and continuing patterns
• Measuring around the house
• Crafting, sewing, knitting | Suggestions:
Meal Time
• Integrate hand washing
• Invite children to help
• Include all members of the family if possible
• Connect/talk during meals
Outside Play
• Walk together
• Bike rides
• Jump rope
• Sidewalk chalk drawing
Inside Play
• Puzzles
• Games
• Stretching
Quiet Time
• Snuggling with a pet/stuffed animal
• Resting or napping
• Listening to calm music |

Please schedule your day as it makes sense for you and as it works best for family schedule and student needs. Each activity or subject does not need to occur in one sitting. Remember to take breaks, and enjoy the time with each other!

Please see our [Online Resources for Families](#) to help with supplemental activities and wellness needs.
<table>
<thead>
<tr>
<th>✓</th>
<th>Day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy</td>
<td></td>
</tr>
<tr>
<td>Mystery Science: Animals Through Time, (Mystery 8)</td>
<td></td>
</tr>
<tr>
<td>In this Mystery, students examine how physical traits can be influenced by the environment.</td>
<td></td>
</tr>
<tr>
<td>● Watch the Exploration Section of How Long Can People (and Animals) Survive in Outer Space? (26 minutes) https://bit.ly/2YJeOco</td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td></td>
</tr>
<tr>
<td>● Let’s learn about angles! Watch this video lesson: Is the Angle Greater Than, Less Than or Equal to a Right Angle?: https://youtu.be/oyQstqJ6Axo</td>
<td></td>
</tr>
<tr>
<td>● Then, watch this video about Finding Right, Acute, and Obtuse Angles: https://www.youtube.com/watch?v=g7K4zttMXT0. After the video, look around your house for 2-3 types of each angle (right, acute, and obtuse).</td>
<td></td>
</tr>
<tr>
<td>Optional practice</td>
<td></td>
</tr>
<tr>
<td>● IXL: CC.6</td>
<td></td>
</tr>
<tr>
<td>● My Math Book pages 837-838</td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td></td>
</tr>
<tr>
<td>Go to this link https://www.youtube.com/watch?v=SPnwENZaX8U and listen to the British National Anthem as sung by Julie Andrews.</td>
<td></td>
</tr>
<tr>
<td>You may recognize Julie Andrews from such films as “Mary Poppins” or “The Sound of Music.” She was only 13 when this recording was made. You might also recognize the melody. Listen to it again on this link, sung with different words: https://www.youtube.com/watch?v=sN2I6vdzgts</td>
<td></td>
</tr>
<tr>
<td>Play it again and sing along!</td>
<td></td>
</tr>
<tr>
<td>How is it that an American patriotic song has the same melody as the British National Anthem? In the 19th century, an American minister and hymn writer named Samuel Francis Smith wrote the words to America and put them to the tune of “God Save the King/Queen.” The song premiered at an Independence Day celebration in 1831 and has been popular ever since. If you wish, you can learn more about Samuel Francis Smith here: https://en.wikipedia.org/wiki/Samuel_Francis_Smith</td>
<td></td>
</tr>
<tr>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>https://www.district196.org/about/calm-room</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>Day 2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Literacy
Mystery Science: Animals Through Time, (Mystery 8)
In the activity, Astronaut-in-Training, students analyze how a NASA astronaut’s traits changed during his “year in space.” Then they measure some of their physical traits (arm strength, height, and balance) and predict how their own traits might change after living in space.
- **Hands-On Activity:** This activity is broken up into 20 steps. Use Days 2 & 3 to do all 20 steps.
Materials needed:
- Ruler, tape measure, or yard stick
- Sticky notes or scratch paper
- **Traits in Space Worksheet** located on page 17 of this packet: https://mysteryscience.com/docs/73 (Choose Spanish/English)
- **Traits in Space Worksheet Answer Key** located on page 40 of this packet: https://mysteryscience.com/docs/465

Math
- **Watch this video on polygons:** https://www.youtube.com/watch?v=UeKN5-oqFTs
- **Listen to a fun Polygon Song:** https://www.youtube.com/watch?v=TbR_rakilds
Optional practice
- IXL: CC.1, CC.2, CC.3, CC.4
- My Math Book pages 843-844

Wellness
https://www.district196.org/about/calm-room
Day 3

Literacy

Mystery Science: Animals Through Time, (Mystery 8)
- If you have not done so already, watch the **Wrap-Up** Section of *How Long Can People (and Animals) Survive in Outer Space?*: https://bit.ly/2YKJv0J
- If you finished all 20 steps on Day 2, have fun exploring Mystery Science today!

Math

- Check out this video lesson on BrainPOP Jr. to learn about polygons (shapes): https://jr.brainpop.com/math/geometry/polygons/
- You may need to enter a username and password (see below) for access. Be sure to click the triangle to play the video
 - Username: molallariver1
 - Password: molallariver1
- Complete the **Geometric Shapes at Home** scavenger hunt (page 19 of this packet)

![Geometric Shapes at Home](image)

Optional practice

- **IXL**: CC.1, CC.2, CC.3, CC.4
- **Crossword Puzzle** (page 20 of this packet): https://candymathgamesworksheets.files.wordpress.com/2011/04/crossword-puzzle-polygons.pdf

Wellness

Relationship Skills

What does it mean to have relationship skills?
- This means you establish and maintain healthy relationships with individuals and groups.

How do we maintain relationships? What skills do I need? You need the ability to:
- Communicate clearly
- Listen well
- Cooperate with others
- Work with others
- Use conflict resolution skills
Sounds a lot like Kelso’s Choices we use at school:

Having relationship skills tells others you care about them.

Right now it can be difficult to maintain positive relationships with all family members, all the time. We might “get on each other’s nerves” due to social distancing from others. We all can feel irritated by one another at some point. So what can we do to maintain those positive relationships?

- Think before you speak, especially when you are angry
- Listen to what the other person is saying and think of how they are feeling
- Agree to disagree and take a time out from the situation
- Practice calming exercises
- Listen to one of these videos (open link below and click on video on right of screen)

K-1 Belly Breathing Video https://www.youtube.com/watch?v=H4W_VUb4aRY&t=10s

2-3 Calm It Down Dance https://www.youtube.com/watch?v=P8TliPQNfsc

4-5 Calm Down Music https://www.youtube.com/watch?v=sD9EfHo68I
<table>
<thead>
<tr>
<th>✓</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy</td>
<td></td>
</tr>
<tr>
<td>● Read to self or read to someone, this Newsela article US Astronaut Breaks Two Space Records on page 21 of this packet.</td>
<td></td>
</tr>
</tbody>
</table>
| ● Complete the attached quiz [on page 23](#) (Answer Key on Page 24) and/or complete this writing prompt:
 ○ Write a short paragraph that explains the main idea of the article. Be sure to include a topic sentence, use at least two details from the article to support your response, and a closing sentence. | |
| **Math** | |
| ● Enjoy this song to learn about the different types of triangles! [https://youtu.be/yNH8G DyCMto](#)
● Complete the worksheet [Types of Triangles](#) on page 25 of this packet: [https://bit.ly/35RXOlI](#) (Answer Key on page 40) | |
| Optional practice | |
| ● IXL: DD.1, DD.2
● My Math Book pages 849-850 | |
| **Music** | |
| Can you draw a triangle in the air with your right hand? With your left hand? With both hands? Start with your hand(s) at the level of your shoulder(s). “Draw” the first line straight down to your waist. “Draw” the second line outwards at waist level. The third line should slant upwards, back to where you started, at shoulder level.
Here is a diagram of the pattern. Practice this pattern in the air with your right hand: | |
<p>| | |
| Now, play and/or sing “My Country ‘tis of Thee” https://www.youtube.com/watch?v=sN2I6vdzgts and practice conducting this pattern to the song. | |
| Wellness | |
| https://www.district196.org/about/calm-room | |</p>
<table>
<thead>
<tr>
<th>✓</th>
<th>Day 5 - Happy Memorial Day!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy</td>
<td>Optional: Reread article about astronaut Peggy Whitson. US Astronaut Breaks Two Space Records and Has Another One Coming Up Soon on page 20 of this packet</td>
</tr>
</tbody>
</table>
| **Math** | Optional Memorial Day challenge:
 - IXL: Social Studies. Section F. American Symbols, Landmarks, and Monuments |
Day 6

Literacy
- Find out how much the dog “Woof” weighs on other planets by calculating his weight. You may use a calculator to record your data on **Weight In Outer Space Worksheet** on page 27 of this packet: https://bit.ly/2Z5DFHJ
- **Optional challenge:** Use the same gravity amounts on the worksheet and calculate how much you weigh on each planet. Using complete sentences, share results with a family member.

Math:
- Let’s learn about the different types of lines! Watch this NUMBEROCK video: https://youtu.be/P3AOoLbA3us
- Complete the **Parallel, Perpendicular, & Intersecting Lines** worksheet (page 28) & **Answer Key** at the end of this packet: https://bit.ly/2YU4nmp
- **Art Activity:** Choose and draw a set of parallel, perpendicular, or intersecting lines on a blank piece of paper. Now using colored pencils, crayons, or markers, try to camouflage your lines into a work of art! Check out this website for more ideas: https://bit.ly/2LnXpOt

Optional practice
- IXL: CC.7, CC.5, DD.3
- My Math Book pages 855-856

Wellness
https://www.district196.org/about/calm-room
Literacy

- Next, use today and Day 8 to design and build a shock-absorbing system that will protect two “astronauts” when they land. Use the materials provided or other household items. If you don’t have marshmallows, please use cotton balls instead. These are the footpads and the astronaut.
- Use the **A Nasa/ Design Squad Challenge (Touchdown) Worksheet** (on page 29 & 30 of this packet) to help guide your thinking: https://bit.ly/2WOLfDs

Math

- To learn about quadrilaterals, watch this BrainPOP video: https://jr.brainpop.com/math/geometry/quadrilaterals/
- You may need to enter a username and password (see below) for access. Be sure to click the triangle to play the video
 - **Username**: molallariver1
 - **Password**: molallariver1
- Then practice classifying (naming) **Quadrilaterals** on page 31 and the **Answer Key** on page 40 of the packet: https://bit.ly/2WSCMz9

Optional challenge

- IXL: DD.8, DD.9 (New!)
- My Math Book pages 863-864

Music

Go to this link https://youtu.be/l-cXessob-I and listen to the first two-and-a-half minutes of Carol and “Gomer” singing a medley of rounds. Did they sing any song(s) you know?

Think about how hard “Gomer” had to concentrate to stay on his own part instead of singing Carol’s part. What did he need to do? Was he able to stand next to her as he sang?
If you are unable to access the video at all, you may start the lesson here:

Find a partner, such as a parent or sibling, who is willing to practice a round with you. Choose a round you both know. It can be one from the video, such as *Row Row Row Your Boat*, or any other song as long as it is a round and both of you know it. Practice singing it, first together and then in a round, as Carol and “Gomer” did on the video. If you do not have a partner, you can practice *Row Row Row Your Boat* with this video: https://youtu.be/7otAJa3jui8. It may take some effort and practice, but remember how hard it was for “Gomer” at first, and he was a professional singer!

Wellness

https://www.district196.org/about/calm-room
<table>
<thead>
<tr>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy:</td>
</tr>
<tr>
<td>● Continue the Touchdown Design Challenge from Day 7.</td>
</tr>
<tr>
<td>● Make changes to your original design. Use the materials provided or other household items. If you don’t have marshmallows, please use cotton balls instead. These are the footpads and the astronauts. You may use legos as your astronaut. Use A Nasa/Design Squad Challenge (Touchdown) Worksheet to help guide your thinking: https://bit.ly/2WOLfDs</td>
</tr>
<tr>
<td>Math:</td>
</tr>
<tr>
<td>● It’s a BrainPOP day! Watch the BrainPOP Jr. video Basic Parts of a Whole: https://bit.ly/2T1LhH4</td>
</tr>
</tbody>
</table>
| ● You may need to enter a username and password (see below) for access. Be sure to click the triangle to play the video
 ○ Username: molallariver1
 ○ Password: molallariver1
 ● Now, try the Basic Parts of a Whole/Hard Quiz on BrainPOP and see what you learned in the video: https://bit.ly/2WT1EXx |

Optional Practice

- Color the fractions on this Basic Parts of a Whole coloring page: https://bit.ly/2WTqg2v located on page 32 of this packet
- Interact with fraction words here: https://jr.brainpop.com/math/fractions/basicpartsofawhole/wordplay/
 - IXL: W.1 (review), or choose any unfinished skills under W: Fractions
 - My Math Book pages 875-876

owlWellness

Responsible Decision Making

Listen to this fun song https://www.youtube.com/watch?v=Bs-wbOB8OaM

We all have problems to solve...even adults. With an adult, pick a problem (you don’t want to watch what your brother/sister is watching) and work it through the S-T-E-P system to solve it

Words to the STEP Song (on next page)
STEP Song
Here is a great way to remember
Keep it strong in your head, yeah
After the storm of strong emotions
Here’s the way to solve the problem, yeah

I say (step)
I just remember to step (step)--oh child
S. you Say the problem out loud now
T, now Think of solutions that may work and how
E, Explore consequences: What would happen if...
P, now Pick the best solution and make your plan, yeah

You gotta step (step)
Step up to be cool, yeah
(S-T-E-P) Give you power now
After the storm of strong emotion
(S-T-E-P) Solve the problem now
Day 9

Literacy
- **Paper Airplane Stem Challenge:** Learn about different components of flight, such as aerodynamics, velocity, thrust, and speed by designing and creating paper airplanes. Test and record data on the Airplane Comparison Chart.
- See pages 33-37 of this packet for directions and the **Airplane Comparison Chart**.
- This link: https://bit.ly/3crxwtc includes all of the directions plus some short videos that demonstrate building the airplanes.

Math:
- The **Answer Key** is also provided on page 36: https://bit.ly/2SYPP0O

Optional Practice
- IXL: Finish skills from previous days(s) or choose a W, CC, or DD skill to complete.
- My Math Book pages 875-876
Music

Continue to practice your round from Lesson #3 with your partner. If it is going well, try practicing a different round, such as

Kookaburra: https://www.youtube.com/watch?v=whzcbmik6mw or

Are You Sleeping https://www.youtube.com/watch?v=tNLd7fc0UUl

or any round you both know. If you don’t have a partner, you can practice with the music videos in these links. If you are both getting good at staying on your own parts, try making your two rounds into a medley and performing it for others, as Carol and “Gomer” did on the video in Lesson #3.

Wellness

https://www.district196.org/about/calm-room
Day 10

Literacy

Mystery Science: Animals Through Time, (Mystery 8)
- **End of Mystery Assessment** at the end of the packet: https://mysteryscience.com/docs/629
- **Answer Key** at the end of the packet: https://mysteryscience.com/docs/612

Math:
- Watch this perimeter video to practice finding the perimeter of quadrilaterals: https://jr.brainpop.com/math/measurement/perimeter/
- You may need to enter a username and password (see below) for access. Be sure to click the triangle to play the video
 - **Username:** molallariver1
 - **Password:** molallariver1
- Complete the **Perimeter worksheet** on page 39 and **Answer Key** (page 41) of this packet to practice these skills OR do the following activity:
 - Measure and calculate the perimeter of different objects in your house, such as a placemat, rug, or picture frame. Then choose a room in your home and find its perimeter. You could even compare different areas—which room in your house has the greatest perimeter? You can use a tape measure or nonstandard units such as footsteps.

Optional practice
- IXL: FF.1, FF.2, FF.3, FF.4, FF.5
- My Math Book pages 757-758 and 763-764

Wellness
https://www.district196.org/about/calm-room
Traits in Space

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Before My Year in Space</td>
<td>After My Year in Space</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>ARM</td>
</tr>
<tr>
<td>I think being in space would / would not change this trait because…</td>
<td>I think being in space would / would not change this trait because…</td>
</tr>
<tr>
<td>I grew one inch (2.5 cm) per year.</td>
<td>I spent a year in space.</td>
</tr>
<tr>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Balance</td>
<td>Strength</td>
</tr>
<tr>
<td>Losing my balance (out of 10) before steps</td>
<td>push-ups</td>
</tr>
<tr>
<td>I can take</td>
<td>I can do</td>
</tr>
<tr>
<td>Before</td>
<td>After</td>
</tr>
</tbody>
</table>
Lesson 2 Reteach

Polygons

A polygon is a closed two-dimensional figure that has three or more straight sides.

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Triangle</th>
<th>Pentagon</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 sides</td>
<td>3 sides</td>
<td>5 sides</td>
</tr>
<tr>
<td>4 angles</td>
<td>3 angles</td>
<td>5 angles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hexagon</th>
<th>Octagon</th>
<th>Not a Polygon</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 sides</td>
<td>8 sides</td>
<td>The figure is not closed.</td>
</tr>
<tr>
<td>6 angles</td>
<td>8 angles</td>
<td></td>
</tr>
</tbody>
</table>

Describe and identify each figure.

1. [hexagon]
 - 6 sides
 - 6 angles

2. [triangle]
 - 3 sides
 - 3 angles

3. [pentagon]
 - 5 sides
 - 5 angles

4. [quadrilateral]
 - 4 sides
 - 4 angles

5. [octagon]
 - 8 sides
 - 8 angles

6. [not a polygon]
 - The figure is not closed.
Geometric Shapes at Home

<table>
<thead>
<tr>
<th>Plane Shape</th>
<th>Household Item</th>
<th>Edges</th>
<th>Corners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pentagon</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Hexagon</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Directions: Look around your home. What items do you see that have plane shapes? Write down the shape, edges, and corners each has.

Find at least one item in your house shaped like each plane shape and write it on your chart.

- Rectangles, squares, pentagons, hexagons, and circles.
Math Crossword Puzzle

Polygons Math Worksheets

Directions: To solve the crossword puzzle, use the words from the Word Bank to find the right definition for the word. Fill in the crossword puzzle with the right words. ‘RHOMBUS’ is done for you.

Across
1. Closed shapes with 3 or more sides.
2. A 12-sided polygon.
3. _____ is fun!
4. A quadrilateral with opposite sides that are parallel.
5. A 9-sided polygon.
6. A quadrilateral with 4 sides that are right angles; 2 of its sides are opposite and parallel. (A square is an example of this as well.)
7. A 7-sided polygon.

Down
1. An 8-sided polygon.
2. A 6-sided polygon.
3. A polygon with 3 sides.
5. A polygon with 4 sides.
6. A quadrilateral with only one pair of parallel sides.
7. A quadrilateral with four equal sides. (In 3-D this is called a cube!)

Word Bank
- Square
- Hexagon
- Triangle
- Rectangle
- Rhombus
- Octagon
- Polygons
- Dodecagon
- Parallelogram
- Trapezoid
- Nonagon
- Decagon
- Pentagon
- Quadrilateral
- Septagon

Diagonal
1. A 5-sided polygon.

BONUS RIDDLE: Using the colored squares, unscramble the letters to make two words:

A polygon is a closed shape that has _______ _______.

(c) Candy Coloring Pages
U.S. astronaut breaks two space records and has another one coming up soon

By AFP, adapted by Newsela staff on 04.04.17

Word Count 497

Level 570L

Peggy Whitson is an American astronaut. On Thursday, she made history. She broke the record for the most spacewalks by a woman.

Whitson is on the International Space Station (ISS). The ISS is like a science lab up in space. It orbits, or circles, the earth. Whitson just completed her eighth spacewalk. A spacewalk is when an astronaut leaves the space station or another spacecraft. They spend time outside in space.

The former record was seven spacewalks. This record was held by Suni Williams. She is also an American astronaut.

Also The Oldest Woman To Ever Fly In Space

Whitson has broken another record, too. At 57 years old, she is the oldest woman ever to fly in space!
The spacewalk began at 7:29 a.m. Whitson and another astronaut turned on the battery power in their spacesuits. They ventured off the space station and into space.

"Be safe and enjoy your time out," said Thomas Pesquet. He is a French astronaut on the space station. "I will be waiting for you."

The two astronauts spent more than six hours in space. They were doing work on the outside of the ISS. They are helping construct parking spots for space taxis. These small spaceships may start flying people to the space station next year.

Was First Woman Commander Of ISS

Whitson is from Iowa. She is known for having a good sense of humor. Some of her hobbies are lifting weights, biking and playing basketball.

In 2008, Whitson became the first woman to serve as commander, or leader, of the space station. This was a big milestone for women in science.

Like most astronauts, Whitson spends most of her time on the ISS doing experiments. Whitson is working on a few experiments now. One is a study to find new cancer treatments. Cancer is a deadly group of diseases. Scientists are trying to find a cure. For another study, Whitson is growing flowers. This is to understand how plants grow in space.

Soon-To-Be Most Days In Space By An American

Whitson arrived at the space station in November. On April 24, she will break another record. This record is for the most days in space by an American. It will be Whitson's 534th day circling the earth.

Next week, Whitson will take another spacewalk. This time the French astronaut, Pesquet, will accompany her. Pesquet will get to ride the ISS's robotic arm. The arm will carry him from one part of the space station to the other. The ISS is as big as a football field.

Whitson said a ride on the robotic arm is exciting. Astronauts call it the "yee-haw ride," she said.
Quiz

1. Read the sentences below. They are the first part of a summary of the article.

Peggy Whitson is an astronaut who has broken many records. She is the first woman to command the International Space Station (ISS).

Which answer choice BEST completes the summary?

(A) The old record for hours in space was held by a French astronaut.
(B) The International Space Station looks like a football field.
(C) She also set a record for most spacewalks by a woman.
(D) It takes more than 534 days for an astronaut to circle around the Earth.

2. Which sentence from "Also The Oldest Woman To Ever Fly In Space" explains what Whitson was doing on her spacewalk?

(A) Whitson has broken another record, too.
(B) Whitson and another astronaut turned on the battery power in their spacesuits.
(C) They stepped off the space station and into space.
(D) They are helping build parking spots for space taxis.

3. What is the purpose of the section "Was First Woman Commander Of ISS"?

(A) to give more information about Peggy Whitson’s background
(B) to explain how big the International Space Station is
(C) to describe how Peggy Whitson breaks records
(D) to show how deadly some types of cancer are

4. Which sentence from "Soon-To-Be Most Days In Space By An American" gives information about another record that Peggy Whitson will break?

(A) Whitson arrived at the space station in November.
(B) It will be Whitson’s 534th day circling the earth.
(C) Next week, Whitson will take another spacewalk.
(D) Whitson said a ride on the robotic arm is exciting.
Answer Key

1. Read the sentences below. They are the first part of a summary of the article.

Peggy Whitson is an astronaut who has broken many records. She is the first woman to command the International Space Station (ISS).

Which answer choice BEST completes the summary?
(A) The old record for hours in space was held by a French astronaut.
(B) The International Space Station looks like a football field.
(C) She also set a record for most spacewalks by a woman.
(D) It takes more than 534 days for an astronaut to circle around the Earth.

2. Which sentence from "Also The Oldest Woman To Ever Fly In Space" explains what Whitson was doing on her spacewalk?
(A) Whitson has broken another record, too.
(B) Whitson and another astronaut turned on the battery power in their spacesuits.
(C) They stepped off the space station and into space.
(D) They are helping build parking spots for space taxis.

3. What is the purpose of the section "Was First Woman Commander Of ISS"?
(A) to give more information about Peggy Whitson's background
(B) to explain how big the International Space Station is
(C) to describe how Peggy Whitson breaks records
(D) to show how deadly some types of cancer are

4. Which sentence from "Soon-To-Be Most Days In Space By An American" gives information about another record that Peggy Whitson will break?
(A) Whitson arrived at the space station in November.
(B) It will be Whitson's 534th day circling the earth.
(C) Next week, Whitson will take another spacewalk.
(D) Whitson said a ride on the robotic arm is exciting.
Name: ________________________

Types of Triangles

An **equilateral triangle** has 3 equal sides.
(An equilateral triangle is also an isosceles triangle.)

An **isosceles triangle** has 2 equal sides.

An **scalene triangle** has 3 sides, each with a different length.

A **right triangle** has exactly one right angle.
(A right triangle may be isosceles or scalene.)

Answer each question below. Write the letter answers in alphabetical order.

Which triangles are equilateral? ________________________

Which triangles are isosceles? ________________________

Which triangles are scalene? ________________________

Which triangles are right triangles? ________________________

Super Teacher Worksheets - www.superteacherworksheets.com
Does space travel change your body?

Have you ever wondered what happens to someone's body when it's in space for a long time? Lots of Hollywood movies show people going to space. They always seem to be fine when they land back on Earth. Are astronauts so lucky in the real world? NASA tried to find out. NASA is the U.S. space agency.

Scientists shared a new DNA study in April. It was published in the journal Science. The study compared the epigenomes of two twin brothers.

The genome is a person's complete set of genes. Genes are made up of DNA. DNA is the basic building blocks of life. It tells your body how to grow and work. It is passed from parents to their children. The epigenome is the record of chemical changes to DNA.

Genes Turn "On" And "Off"

Changes in a person's epigenome do not change the genome. They simply turn certain genes "on" or "off." Epigenetic changes happen in normal parts of life, like getting older. They also happen when one has a disease like cancer. When epigenetic changes happen at the wrong time, it can cause problems.

The new study compared two twins. One was astronaut Scott Kelly. The other was his brother Mark Kelly. Scott went into space for a year. Mark stayed on Earth while Scott was in space. The study showed that Scott had no major, long-term differences to his epigenome compared to his twin.

Health Problems In Space

Scientists say the study's meaning is not fully clear yet. More studies could be useful, though. They could help each astronaut understand what health problems could arise in space.

Putting your body in space has many dangers. You are exposed to many things in space. It means limited food and exercise. It means different sleep cycles. It could lead to many other problems we do not know about yet. Scientists say it's important to understand the effects space travel has on the body. It will be even more important for longer trips, like going to Mars.

Scientists collected information about the brothers' bodies. They studied them for 27 months. How did they get Scott's information when he was in space? They sent samples back to Earth in a rocket. Yes, seriously. The scientists then looked at the samples. They looked for epigenetic changes.

They found just about as many epigenetic changes in Scott as there were in his twin. It did not seem that space caused bad epigenetic changes. The study was too small to know for sure, though, said Lindsay Rizzardi. She is a scientist in Alabama. She said the study was helpful. Scientists know what to look at more closely in future studies of astronauts, she said.
Weight in Outer Space

Name: ____________________________

You can find out what something would weigh on other planets by calculating Mass x Gravity. The force of gravity is different on each planet because the planets are different sizes.

Let’s imagine that my dog Woof travels to space. On Earth, Woof weighs 30 pounds. We can find out how much Woof weighs on each planet by using this equation:

Mass x Gravity = Weight

Calculate Woof’s weight on different planets using this chart.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Woof’s Mass</th>
<th>Gravity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>30 lbs</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>30 lbs</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>30 lbs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>30 lbs</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>30 lbs</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>30 lbs</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td>30 lbs</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>30 lbs</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

You can figure out what any object would weigh on a different planet by substituting the mass of the object for Woof’s mass. Find a scale and try it out with something else-yourself, a bowling ball, your friend’s hamster…you name it!

Fun Fact: Multiply mass by 28 to find out what an object would weigh on the Sun…now that is heavy!

© 2017 www.shareitscience.com
Parallel, perpendicular & intersecting lines

Grade 3 Geometry Worksheet

Parallel lines do not intersect or touch each other at any point. Perpendicular lines form right angles (90°) when they intersect. Intersecting lines cross at one point.

Write "parallel", "perpendicular" or "intersecting" below each pair of lines.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw the following:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel lines</td>
<td>Perpendicular lines</td>
<td>Intersecting lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading and Math for K-5

© www.k5learning.com
Landing on the moon is tricky. First, since a spacecraft can go as fast as 18,000 miles per hour (29,000 km/hour) on its way to the moon, it needs to slow way down. Then it needs to land gently. That lander has astronauts inside, not crash-test dummies. Easy does it!

WE CHALLENGE YOU TO...

...design and build a shock-absorbing system that will protect two “astronauts” when they land.

BRAINSTORM AND DESIGN

Think about how to build a spacecraft that can absorb the shock of a landing.

- What kind of shock absorber can you make from these materials that can help soften a landing?
- How will you make sure the lander doesn’t tip over as it falls through the air?

BUILD

1. First, design a shock-absorbing system.
 Think springs and cushions.
2. Then, put your spacecraft together.
 Attach the shock absorbers to the cardboard platform.
3. Finally, add a cabin for the astronauts.
 Tape the cup to the platform. Put two astronauts (the large marshmallows) in it.
 (NOTE: The cup has to stay open—no lids!)

MATERIALS (per lander)
- 1 piece of stiff paper or cardboard (approximately 4 x 5 in/10 x 13 cm)
- 1 small paper or plastic cup
- 3 index cards
 (3 x 5 in/8 x 13 cm)
- 2 regular marshmallows
- 10 miniature marshmallows
- 3 rubber bands
- 8 plastic straws
- scissors
- tape
TEST, EVALUATE, AND REDesign

Ready to test? Drop your lander from a height of one foot (30 cm). If the “astronauts” bounce out, figure out ways to improve your design. Study any problems and redesign. For example, if your spacecraft:

- **tips over as it falls through the air**—Make sure it’s level when you release it. Also check that the cup is centered on the cardboard. Finally, check that the weight is evenly distributed.
- **bounces the astronauts out of the cup**—Add soft pads or change the number or position of the shock absorbers. Also, make the springs less springy so they don’t bounce the astronauts out.

THE COOLEST JOB AT NASA

When people asked Cathy Peddie what she wanted to do when she grew up, she would point at the sky and say, “I want to work up there!” Now an engineer at NASA, she manages the Lunar Reconnaissance Orbiter (LRO) project. She calls it “the coolest job at NASA.” LRO will orbit the moon for at least a year and collect information to help NASA prepare for having people live and work there. Hear her describe the mission at: learners.gsfc.nasa.gov/mediaviewer/LRO.

BURIED ALIVE?

The first people who landed on the moon took a big risk. That’s because the moon is covered with a thick layer of fine dust. No one knew how deep or soft this layer was. Would a spacecraft sink out of sight when it landed? Now we know—the layer is firm. In the picture, you can see that Apollo 11’s lander pads sank only about 2 inches (5 cm) into the dust. What a relief! This helped NASA figure out the kinds of shock absorbers and landing systems its spacecraft need.

Watch DESIGN SQUAD on PBS or online at pbs.org/designsquard.

For more information about NASA missions and educational programs, visit nasa.gov.
Quadrilaterals are any polygon with four sides and four angles.

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>All sides are the same length; there are four right angles</td>
</tr>
<tr>
<td>Rectangle</td>
<td>Opposite sides are parallel and the same length; there are four right angles</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>Two pairs of opposite parallel sides</td>
</tr>
<tr>
<td>Rhombus</td>
<td>Two pairs of parallel sides; all sides are the same length</td>
</tr>
<tr>
<td>Trapezoid</td>
<td>Only one pair of parallel sides</td>
</tr>
</tbody>
</table>

Write the name of each quadrilateral.

a. ___________________________

b. ___________________________

c. ___________________________

d. ___________________________

e. ___________________________

f. ___________________________

g. How can you tell the difference between a parallelogram and a trapezoid?

h. How can you tell the difference between a square and a rhombus?

Color in the sections with the shapes that show each fraction.

Name:

Yellow = $\frac{1}{3}$

Orange = $\frac{1}{2}$

Blue = $\frac{1}{4}$
How to Make Paper Airplanes

This activity will teach your students about aerodynamics, the forces of flight, and the fun of paper airplanes! By making three different models of paper airplanes and testing each of them, students will begin to understand what makes a plane fly and how they can design their very own paper airplane! You’ll need to gather some materials for paper airplane making and testing. You’ll need:

- Paper
 - I’ve found that while children like to use colored construction paper, it is too heavy to fly and a bit more difficult to fold, so I would recommend regular printer paper or lightweight colored paper.
 - Paper clips (optional)
 - Tape (also optional)
 - Colored pencils or markers
 - It’s always fun to have the students decorate their planes! You can even have them give their planes a name and write it along the side. Each plane will look very different!

- For testing:
 - Tape measure
 - Stopwatch
 - Large outdoor space (preferred)

Once you have all the listed materials, you’ll need an Airplane Comparison Chart, like the one shown below. You simply need three columns and nine rows. Each row will be for an individual trial of one of the airplanes. Each column will measure the time, distance, and average measurements of each plane.

Follow the directions to create three different paper airplane designs.

Tips for paper airplane folding: Line up your fold before you crease. Make good creases and tight folds to improve the aerodynamics of the plane. Keep your folding as symmetrical as possible for better flight results. Add tape if you will be throwing the plane multiple times so it doesn’t fall apart after each throw. Staples also work, but will add weight to the plane.
<table>
<thead>
<tr>
<th></th>
<th>Time Aloft (seconds)</th>
<th>Distance (feet)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic Dart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Glider</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spy Glider</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Airplane: Classic Dart

1. Fold your paper hot dog style.
2. Lay the paper out in front of you, portrait style.
3. Fold the top-right corner to the center crease, lining up the edges and creating a triangle.
4. Do the same thing with the left corner.
5. Fold the right side again, along the crease.
6. Do the same thing with the left side.
7. Fold the plane inwards, in half, so the previous folds are on the inside.
8. Fold back one side so the edges align.
9. Flip and repeat with the other wing.

Tip for throwing: For this plane, hold it slightly above your head when throwing to achieve a better liftoff. Use a nice level throw; don’t aim too high or too low.

Airplane: Speed Glider

1. Fold your paper hot dog style.
2. Lay the paper out in front of you, portrait style.
3. Fold the top-right corner to the center crease, lining up the edges and creating a triangle.
4. Do the same thing with the left corner.
5. Fold the point of the plane down, creating a fold along the bottom of the corner triangles. The tip should be about ⅓ of the page from the bottom of the paper.
6. Fold the top-right corner to the center, about one inch above the tip.
7. Repeat with the left corner. This should create a small triangle at the point.
8. Fold the small triangle up.
9. Flip your plane over so that your folds are on the table.
10. Fold your plane in half, left side onto its right, so the edges line up.
11. Fold the top wing down so your edges align.
12. Flip and repeat with the other wing.

Airplane:

Spy Glider

1. Fold your paper hamburger style.
2. Lay the paper out in front of you, landscape style.
3. Fold the top-right corner point to the center, about an inch and a half from the top of the paper.
4. Repeat with the top-left corner point, forming a wide upside-down triangle at the top of the paper.
5. Fold the top of the paper down, to the tip of the upside-down triangle.
6. Fold the top over itself again, crease well. Repeat this fold twice more.
7. Fold in half, inwards. Unfold.
8. Fold in half, outwards.
9. Make a crease about one inch from the left edge and fold the right side/top wing to the left on this crease. Flip and repeat.
10. Fold 1 inch on edge of wings up.

Hint: For this plane, throw it angled more steeply upwards, instead of straight, to see it glide. This plane needs a hard throw.

Tips for airplane throwing: Most planes require a loose and light grip, and a quick throw. Tilt your plane up slightly before you throw it, and release early. This will help your plane catch the wind and propel itself upwards, using lift force.

1. Fly the planes to test time aloft and distance. Record the information on the Airplane Comparison Chart. (to match chart)
2. After testing, have students try to design their own paper airplane, using components from the planes they’ve already made. Have them name their new plane.
3. Test the students’ planes. Record the test results on the Challenge Chart.
STEM Challenge: Airplane Grade 3

Using a premade paper airplane or diagram to demonstrate, discuss the forces of flight with your students. Highlight key vocabulary such as: lift, weight, thrust, and drag.

- **Lift** is the force that is created by the wings of the airplane, which push air down so the aircraft rises up.
- **Weight**, along with gravity, pulls down on the plane, opposite the lift.
- **Thrust** is the force that propels the plane forward, created by the engines of the aircraft.
- **Drag** is the air resistance that acts opposite the thrust.

Have fun flying your very own paper airplanes! This easy and fun STEM lesson can be adapted for all ages, and paper airplanes never get old. Challenge your students to design their own plane, tweak it for optimal performance, and get creative with their designs and decorations.
Lesson 7 Enrich

Partition Shapes

Sometimes you can find a lot of small figures in big figures. Count as many as you can. Write the number of figures on the line.

How many squares? ____________________________

How many triangles? ____________________________

How many rectangles? ____________________________

How many triangles? ____________________________

Compose your own figure. Have a friend try to find all the hidden shapes.
Perimeter

Find the perimeter of each polygon.

a. Perimeter = ________

b. Perimeter = ________

c. Perimeter = ________

d. Perimeter = ________

e. Perimeter = ________

f. Perimeter = ________

g. Perimeter = ________

h. Perimeter = ________

i. Perimeter = ________

Bonus Box: Write the names of the polygons pictured above.
Traits in Space

<table>
<thead>
<tr>
<th>Traits</th>
<th>BEFORE MY YEAR IN SPACE</th>
<th>AFTER MY YEAR IN SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM STRENGTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BALANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEIGHT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Answer Key

Types of Triangles

- An equilateral triangle has 3 equal sides. It is also an isosceles triangle.
- A isosceles triangle has 2 equal sides. It is also a scalene triangle.
- A scalene triangle has 3 sides, each of a different length.
- A right triangle has exactly one right angle. It is also a scalene triangle.

Quadrilaterals

- Square: All sides are the same length; there are four right angles.
- Rectangle: Opposite sides are parallel and equal; there are four right angles.
- Parallelogram: Two pairs of opposite parallel sides. Opposite sides are the same length.
- Rhombus: Two pairs of parallel sides. All sides are the same length.
- Trapezoid: One pair of opposite parallel sides.

Lesson 7 Enrich

Partition Shapes

Sometimes you can find a lot of small figures in big figures. Count as many as you can. Write the number of figures on the line.

- How many squares? as many as 14
- How many triangles? as many as 16
- How many rectangles? as many as 9
- How many triangles? as many as 44

Compose your own figure. Have a friend try to find all the hidden shapes. See students’ work.
Find the perimeter of each polygon.

Perimeter

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 cm</td>
<td>8 cm</td>
<td>6 cm</td>
</tr>
<tr>
<td>Perimeter = 19 cm</td>
<td>Perimeter = 24 m</td>
<td>Perimeter = 34 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d.</th>
<th>e.</th>
<th>f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 km</td>
<td>5 km</td>
<td>5 km</td>
</tr>
<tr>
<td>Perimeter = 18 m</td>
<td>Perimeter = 6 km</td>
<td>Perimeter = 20 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g.</th>
<th>h.</th>
<th>i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>4 cm</td>
<td>7 cm</td>
</tr>
<tr>
<td>Perimeter = 26 m</td>
<td>Perimeter = 16 km</td>
<td>Perimeter = 24 cm</td>
</tr>
</tbody>
</table>

Bonus Box: Write the names of the polygons pictured above.

rectangle, triangle, square, trapezoid, parallelogram, hexagon, diamond or square, rectangle, octagon